Terremoto: muri due volte più resistenti con rinforzi antisismici Made in Italy

MeteoWeb

Pareti rinforzate con sistemi strutturali innovativi hanno resistito a oltre 2 volte le accelerazioni del terremoto dell’Aquila del 2009. È quanto emerge dai risultati di test alle tavole vibranti del Centro Ricerche ENEA Casaccia, condotti su due muri tipici di costruzioni di centri storici dell’Appenino centro-meridionale. Prima di essere sottoposte alle più violente scosse di terremoto che abbiano colpito il nostro Paese negli ultimi decenni, le due pareti, una in pietra e l’altra in tufo, erano state portate a danneggiamento in una serie di test lo scorso dicembre e successivamente rinforzate per misurarne l’aumento di capacità sismica.
“Rispetto ai precedenti test, la parete in pietrame, rinforzata con il nuovo sistema, ha raggiunto lo stato limite di danno, cioè il momento in cui si è formata la prima lesione, ad accelerazioni due volte e mezzo più forti”, ha spiegato Gerardo De Canio, responsabile Laboratorio Innovazione Sostenibile dell’ENEA. “Ma ancora meglio è andata la parete in tufo, che ha raggiunto la stato limite di danno con accelerazioni ancora più alte, circa 3 volte e mezzo i valori registrati durante i test precedenti”.

Durante l’esperimento, condotto dal Dipartimento di Ingegneria dell’Università degli Studi Roma Tre e dall’ENEA, con il supporto di Kerakoll SpA, le pareti sono state vincolate sulle tavole vibranti alla base ed in sommità, in modo tale da essere sollecitate anche da spinte fuori piano, cioè ortogonali alla parete – una delle condizioni di maggiore vulnerabilità per le murature – in un crescendo di accelerazioni che hanno ripercorso le intensità sismiche dei terremoti dell’Irpinia (1980), Nocera Umbra (1997), L’Aquila (2009), Emilia (2012) e Amatrice (2016).

“I recenti eventi sismici dell’Italia centrale hanno mostrato la drammatica vulnerabilità del costruito storico e la conseguente necessità di dare un contributo alla ricerca e al Paese nel trovare le tecnologie appropriate per il rinforzo sismico delle strutture e per mettere in atto interventi di prevenzione per la salvaguardia degli edifici e delle vite umane”, ha commentato il professor Gianmarco De Felice del Dipartimento di Ingegneria dell’Università Roma Tre. “Con questo obiettivo abbiamo testato le nuove tecnologie che si sono rivelate molto promettenti, suscitando l’interesse sia della comunità internazionale che di quella nazionale, con l’obiettivo di qualificare l’uso di nuovi materiali compositi in ambito strutturale”.

Si tratta di due sistemi di rinforzo strutturale dalle alte prestazioni meccaniche, installati sul supporto in muratura mediante l’impiego di una matrice minerale a base di calce idraulica naturale, ideale nel restauro e consolidamento di edifici storici e vincolati. Il primo sistema FRCM (Fiber Reinforced Cementitious Matrix), sul muro in pietra, sfrutta le peculiarità di una rete bidirezionale in fibra di basalto e acciaio inox installata in modo diffuso su entrambi i lati della parete, e collegata da diatoni in fibra di acciaio ad altissima resistenza; il secondo SRG (Steel Reinforced Grout), che ha rinforzato il muro di pietre di tufo, si compone invece di 2 fasce verticali in fibra di acciaio galvanizzato ad altissima resistenza, installate su entrambe le facce, ancorate sui cordoli dell’edificio, alla base e in sommità.

“L’innovazione di questi sistemi sta proprio nella scelta dei leganti e dei materiali studiati ad hoc per collaborare tra loro e con la struttura esistente”, ha sottolineato l’Ing. Paolo Girardello del Centro Studi Kerakoll. “Traspirabilità, reversibilità e compatibilità con supporti in muratura storica esistente, insieme alla facile e rapida applicazione anche durante la manutenzione ordinaria dell’edificio e la eventuale messa in sicurezza, ne fanno un sistema ideale per il miglioramento sismico del patrimonio edilizio del nostro Paese. Abbiamo potuto raggiungere questi risultati grazie alla capacità di innovare e alla continua attenzione verso l’attività di Ricerca e Sviluppo condotta all’interno del Kerakoll GreenLab di Sassuolo, il nostro avveniristico Centro Ricerche che raggruppa 9 laboratori avanzati per lo sviluppo di Green Technology”.

Catturati attraverso un sistema di motion capture in 3D, i dati ottenuti durante la sperimentazione sono stati condivisi, grazie alla piattaforma virtuale DySCo, unica in Italia, progettata e realizzata dall’ENEA. Altri parter, quali Massachusetts Institute of Technology (Mit), Università di Miami, Smithsonian Institute e National Gallery of Art di Washington, hanno potuto assistere ai test e condividerne i risultati in collegamento streaming.

“Con queste iniziative l’ENEA intende mettere a disposizione di enti, ordini professionali, università e aziende le tavole vibranti per le prove sperimentali e la verifica delle tecniche di intervento, nel quadro più ampio della sfida per la prevenzione e protezione sismica”, ha concluso Gerardo De Canio. “Più in generale l’ENEA punta ad affermare un impegno attivo nella condivisione della sperimentazione attraverso la messa in rete dei laboratori e la diffusione della cultura della sicurezza sismica, per consentire una ricostruzione partecipata del nostro Paese, obiettivi prioritari del progetto Casa Italia”.

Le prove sperimentali sono state effettuate nell’ambito del progetto di cooperazione scientifico tecnologico Italia-Usa di rilevante interesse nazionale “Composites with inorganic matrix for sustainable strengthening of architectural heritage”, finanziato dal Ministero degli Affari Esteri, e del progetto CoBRA “Sviluppo e diffusione di metodi, tecnologie e strumenti avanzati per la Conservazione dei Beni culturali, basati sull’applicazione di Radiazioni e di tecnologie Abilitanti”, finanziato alla Regione Lazio, con il supporto di Kerakoll SpA e Consorzio ReLUIS (Rete dei Laboratori Universitari di Ingegneria Sismica), all’interno di un progetto di ricerca finanziato dal Dipartimento della protezione Civile.

Condividi