Mistero nella Via Lattea, scoperto oggetto cosmico mai visto

I dati utilizzati per lo studio sono stati raccolti attraverso il radiotelescopio MeerKAT
MeteoWeb

Nella Via Lattea è stato recentemente individuato un oggetto cosmico enigmatico, una via di mezzo tra una stella di neutroni e un buco nero. Gli scienziati, affrontando notevoli difficoltà nell’identificare tale oggetto, hanno evidenziato la sua caratteristica unica: una massa posizionata esattamente a metà tra quella di una stella di neutroni e un buco nero, fenomeno mai precedentemente osservato. Tale entità potrebbe quindi essere interpretata come una stella di neutroni eccezionalmente massiccia o un buco nero straordinariamente compatto.

Le informazioni emergono da uno studio pubblicato sulla rivista Science, condotto dall’Istituto tedesco Max Planck per la Radioastronomia di Bonn, con la collaborazione dell’Università di Bologna e dell’Istituto Nazionale di Astrofisica di Bologna e Cagliari. Mays Fishbach, commentando lo studio guidato da Ewan Barr e Arunima Dutta, afferma che, indipendentemente dalla natura di questa struttura, la sua scoperta apre interessanti prospettive. Il misterioso oggetto potrebbe fornire nuove chiavi di lettura per comprendere la fisica alla base della materia nucleare estremamente densa, delle esplosioni di supernove e di altri fenomeni celesti, come le fusioni tra stelle di neutroni.

Un buco nero è una regione dello Spazio in cui la gravità è così intensa che nulla, nemmeno la luce, può sfuggirvi. Una stella di neutroni è il residuo denso di una supernova, composto principalmente da neutroni, con un campo gravitazionale estremamente forte, ma meno intenso di un buco nero. Entrambi sono risultati della morte di stelle massive.

Sebbene la vera identità dell’oggetto scoperto nella Via Lattea rimanga ignota, gli studiosi ipotizzano che possa essersi formato in seguito alla fusione di due stelle di neutroni, evento scaturito dall’ambiente estremamente denso di un globulare ammasso stellare in cui risiede.

Nell’ambito delle due collaborazioni internazionali “Transients and Pulsars with MeerKAT” (TRAPUM) e “MeerTime”, gli esperti sono stati in grado prima di rilevare e poi di studiare ripetutamente i deboli impulsi provenienti da una delle stelle dell’ammasso, identificandola come una pulsar radio, un tipo di stella di neutroni che gira molto rapidamente ed emette onde radio nell’Universo come un faro cosmico. Questa pulsar, denominata NGC 1851E (ossia la quinta pulsar nell’ammasso globulare NGC 1851), ruota su se stessa più di 170 volte al secondo, e ogni rotazione produce un impulso ritmico, come il ticchettio di un orologio.

Spiega Ewan Barr, dell’Istituto Max Planck per la Radioastronomia di Bonn e primo autore (assieme alla dottoranda dello stesso istituto Arunima Dutta) dello studio: “il ticchettio di questi impulsi è incredibilmente regolare. Osservando come cambiano i tempi dei ticchettii, tramite una tecnica chiamata pulsar timing, siamo stati in grado di effettuare misurazioni estremamente precise del moto orbitale di questo oggetto”.

L’estrema regolarità degli impulsi osservati ha permesso anche una misurazione molto precisa della posizione del sistema, dimostrando – tramite osservazioni col telescopio spaziale Hubble – che l’oggetto in orbita attorno alla pulsar non era una normale stella, bensì un residuo estremamente denso di una stella collassata. Inoltre, il fatto che l’orbita stia progressivamente cambiando l’orientamento rispetto a noi (un effetto chiamato tecnicamente “precessione del periastro” e previsto dalla relatività generale) ha mostrato che la compagna ha una massa che era contemporaneamente più grande di quella di qualsiasi stella di neutroni conosciuta e tuttavia più piccola di quella di qualsiasi buco nero conosciuto, posizionandola esattamente nel gap di massa dei buchi neri.

Alessandro Ridolfi, primo autore della scoperta di NGC 1851E (conosciuta anche col nome alternativo PSR J0514-4002E), nel 2022, co-autore della pubblicazione su Science, nonché postdoc presso l’INAF di Cagliari, sottolinea: “sin dalle prime osservazioni successive alla scoperta, questo sistema binario mostrava caratteristiche peculiari, in particolare per quanto riguarda l’elevata massa della stella compagna. Ulteriori osservazioni hanno evidenziato che si trattava addirittura di un sistema unico, con una stella compagna avente una massa in quella che per ora è la “terra di nessuno” per gli oggetti compatti, ovverosia quell’intervallo di masse per le quali la teoria non è oggi in grado di stabilire se si abbia a che fare con un buco nero leggero o una stella di neutroni pesante”. Ridolfi è uno dei vincitori del bando “Astrofit-INAF” e lavora alla ricerca di nuove pulsar esotiche ospitate in ammassi globulari.

Cristina Pallanca, ricercatrice al Dipartimento di Fisica e Astronomia “Augusto Righi” dell’Università di Bologna, prosegue: “se si rivelerà essere un buco nero, avremo individuato il primo sistema binario composto da una pulsar e un buco nero, una sorta di Santo Graal dell’astronomia. Grazie ad esso avremo un’opportunità senza precedenti per testare con altissima precisione la teoria della relatività generale di Albert Einstein e, di conseguenza, per comprendere meglio le proprietà fisiche dei buchi neri”. 

E aggiunge Marta Burgay, un’altra ricercatrice di INAF-Cagliari coinvolta nel progetto: “se invece si trattasse di una stella di neutroni, la sua massa elevata imporrà nuovi vincoli alla natura delle forze nucleari, vincoli che non si possono ottenere con nessun esperimento di laboratorio”. 

Il sistema si trova nell’ammasso globulare NGC 1851, un denso insieme di vecchie stelle molto più fitte rispetto alle stelle del resto della Galassia. Mario Cadelano, ricercatore al Dipartimento di Fisica e Astronomia “Augusto Righi” dell’Università di Bologna, lo descrive: “un sistema binario così non poteva che crearsi in un ambiente altrettanto straordinario: l’ammasso globulare NGC 1851 è un insieme di centinaia di migliaia di stelle mantenute unite dalla loro stessa forza di gravità, formatosi circa 13 miliardi di anni fa, quando l’universo aveva appena 800 mila anni e la nostra Galassia stava attraversando le prime fasi di formazione. All’interno degli ammassi globulari, le stelle interagiscono continuamente durante il corso della loro vita: si scambiano energia, collidono, si uniscono in nuovi sistemi binari e così via. Il nucleo di NGC 1851 è dinamicamente molto attivo, anche più rispetto a quello di altri ammassi globulari, e questo ha favorito la formazione del sistema binario unico nel suo genere che abbiamo scoperto”.

Le regioni centrali di NGC 1851 sono così affollate che le stelle possono interagire tra loro, sconvolgendo le loro orbite e nei casi più estremi scontrandosi. Si ritiene che sia stata una di queste collisioni tra due stelle di neutroni a creare l’oggetto massiccio che ora orbita attorno alla radio pulsar. Tuttavia, prima che venisse creata l’attuale binaria, la radio pulsar deve aver acquisito materiale da un’altra stella in una cosiddetta binaria a raggi X di piccola massa. Un tale processo di “riciclaggio” è necessario per riportare la pulsar alla velocità di rotazione attuale.

I dati utilizzati per lo studio sono stati raccolti attraverso il radiotelescopio MeerKAT, composto da 64 antenne situate in Sud Africa. Questo strumento è parte integrante del progetto Square Kilometre Array, un imponente telescopio attualmente in fase di costruzione in Australia e Sud Africa per esplorare lo Spazio profondo.

La scoperta di questo oggetto misterioso mette in luce le potenzialità degli strumenti utilizzati in questa survey e delle antenne che arriveranno nel futuro. Andrea Possenti, ricercatore anch’egli presso la sede sarda dell’INAF, commenta: “questa scoperta è l’apice degli studi finora condotti, grazie al sensibilissimo telescopio MeerKAT, sulle pulsar negli ammassi globulari, un campo di ricerca dove INAF, tramite il gruppo di Cagliari, ricopre dall’inizio un ruolo primario. Ruolo importante sia sul fronte della ricerca di nuove pulsar, 87 quelle scoperte fino ad oggi con il solo radiotelescopio sudafricano, sia ai fini dello studio di quelle note. Il bello è che c’è ancora tanto da scoprire in questi densi sistemi stellari, sia con le osservazioni a MeerKAT, sia, ancor più, con l’avvento del rivoluzionario radiotelescopio SKA. Senza contare – conclude Possenti – che collisioni fra stelle di neutroni come quella ipotizzata per spiegare l’origine di questo sistema potrebbero costituire ulteriori eventi, rari ma di grande interesse, per telescopi per onde gravitazionali, come Virgo, Ligo e il futuro Einstein Telescope”.

Condividi